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The dipole flexoelectric �FE� polarization in liquid crystals is derived in the thermodynamic limit at small
distortions and small density. General microscopic expressions for the FE coefficients are obtained in the case
of the uniaxial and biaxial nematic phases composed of C2v molecules. The expressions involve the one-
particle distribution function and the potential energy of two-body short-range interactions. In the case of the
biaxial nematic phase, six basic deformations produce FE polarization but there are only five independent FE
coefficients.
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Biaxial nematic liquid crystals are characterized by aniso-
tropic positional short-range order and orientational long-
range order �1�. The anisotropic molecules tend to be parallel
to selected axes, labeled by the unit orthogonal vectors L� , M� ,
and N� . In the uniaxial nematic phase only the N� axis is de-
fined. Stable biaxial phases were observed in 1980 in lyotro-
pic systems by Yu and Saupe �2� but their existence in ther-
motropic systems was not certain for many years �3�.
Recently, Madsen et al. �4� synthesized banana-shaped me-
sogens and evidence for biaxiality was achieved using NMR
spectroscopy. Acharya et al. �5� revealed biaxiality of bent-
core mesogens by means of low-angle x-ray diffraction. Mer-
kel et al. �6� carried out infrared absorbance measurements
on two liquid crystalline organosiloxane tetrapodes and
showed the existence of a biaxial nematic phase.

Theoretical predictions of biaxial nematic phases started
in 1970 with the paper by Freiser �7�. Then they were studied
using a number of theoretical methods, e.g., mean-field
theory �8,9�, counting methods �10,11�, Landau–de Gennes
theory �12,13�, bifurcation analysis �14�, and density-
functional theory �15�. All the theories mentioned above pre-
dict that the system will exhibit four phases as the molecular
biaxiality varies: a positive and a negative uniaxial phase,
respectively, formed by prolate and oblate molecules, a biax-
ial, and an isotropic phase. The nematic-isotropic phase tran-
sition is expected to be first order and to weaken as the
biaxiality increases until it becomes continuous at the point
�Landau bicritical point� of maximum molecular biaxiality.
At this point the system should go directly from a biaxial to
an isotropic phase. The uniaxial-biaxial transition is expected
to be second order.

A microscopic mean-field theory �16,17� predicts the pos-
sibility of lines of second-order and first-order uniaxial-
biaxial transitions joined at a tricritical point. The experi-
mental results by Merkel et al. �6� were successfully
interpreted in terms of this theory. A weakly first-order
uniaxial-biaxial transition was also revealed by dynamic
light scattering from orientational order fluctuations in a liq-
uid crystalline tetrapode �18�. Recently, two-particle cluster
theory was applied to study the biaxial molecules in the Son-
net model �16� and qualitative agreement with the mean-field
theory was obtained �19�. A Monte Carlo study of biaxial
nematic phases composed of V-shaped molecules was done
by Bates and Luckhurst �20�.

In most practical circumstances the liquid crystal phase
alignment is deformed. The deformations usually are de-
scribed by a continuum theory where the free energy is ex-
panded to the second order around the free energy of the
undeformed state in ascending powers of a parameter that
measures the deformation. The free energy due to the distor-
tion of the axes is expressed in terms of the vector spatial
derivatives and the elastic constants.

In a deformed uniaxial nematic liquid crystal, there
should appear in many cases a spontaneous dielectric polar-
ization described by Meyer �21�:

P� = e1N� ��� · N� � + e3�N� · �� �N� = e1N� ��� · N� � − e3N� � ��� � N� � ,

�1�

where e1 and e3 are the splay and the bend flexoelectric �FE�
coefficients, respectively. The appearance of spontaneous po-
larization in liquid crystals as a result of orientational defor-
mations is referred to as the flexoelectric effect.

A microscopic mechanism of the FE effect was proposed
by Meyer �21�, who pointed out that, under the condition of
orientation deformation of a liquid crystal, banana-shaped or
conical molecules should be so oriented that their constant
dipoles are ordered and macroscopic polarization sets in. On
the other hand, Prost and Marcerou �22� showed that polar-
ization in a deformed liquid crystal is also produced as a
result of a gradient in the average density of the molecule
quadrupole moments. Such a polarization does not need
asymmetry in molecular shape of the banana or cone kind.
Later, the FE coefficients for the uniaxial nematic phase were
calculated by means of a statistical-mechanical theory �23�,
mean-field theories �24,25�, the density-functional formalism
�26,27�, an integral equation approach �28�, and computer
simulations �29,30�. The expressions connecting the molecu-
lar asymmetry, the elasticity of the liquid crystal, and the FE
coefficients were obtained by Derzhanski and co-workers
�31�. It was also shown �32� that the FE coefficients can have
nontrivial dependence on the details of the molecule’s
chemical structure �an isomerization, a charge distribution�.

The flexoelectric polarization can influence electro-optical
properties, defect formation, and structural instability. Thus,
different techniques have been suggested to observe possible
mechanisms producing the FE effect �33�. The FE coeffi-
cients can be obtained experimentally from measuring the
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polarizations or the surface charges induced by an imposed
distortion or using the inverse effect, because when an elec-
tric field is applied on a nematic, the alignment may become
distorted and this will imply a polarization �34�. The flexo-
electric polarization of 5CB �4-pentyl-4�-cyanobiphenyl�
was measured by means of a pyroelectric-effect-based tech-
nique �35,36� and recently a technique inspired by the
flexoelectric-optic effect was demonstrated �37�.

Below, we would like to investigate the FE effect in bi-
axial nematic phases. In the case of the uniaxial nematic
phase there are three independent phase deformations: splay,
twist, and bend. The symmetry considerations of Rudquist
and Lagerwall �38� prove that in uniaxial nematic liquid
crystals the FE effect can be induced by splay or bend. The
polarization connected with bend has to be perpendicular to

the director N� , whereas in the splay deformation, a polariza-
tion along the director is admitted. The twist is not connected
with a local polarization of the medium because there is al-
ways a twofold symmetry axis perpendicular to the helix
axis.

It was shown �39� that in the case of the biaxial nematic
phase there are 12 independent phase deformations and six
of them are connected with splays and bends of the vectors

L� , M� , and N� . Thus, we can expect that there are six FE
coefficients for the biaxial nematic phase.

Let us assume that the FE polarization, which is a vector

quantity, depends on the spatial derivatives of the vectors L� ,

M� , and N� ,

P� = sijRi���Rj� + bijRi���Rj�, �2�

where we denoted

L� = R1�, M� = R2�, N� = R3�. �3�

The matrix elements Ri� �i=1,2 ,3 and �=x ,y ,z� satisfy the
conditions

�
�

Ri�Rj� = �ij, �
i

Ri�Ri� = ���. �4�

The above relations express the orthogonality and the com-
pleteness of the local frame. It is also possible to derive the
identity �to be used later�

�
i

�Ri���Ri� + Ri���Ri�� = 0. �5�

The number of independent FE coefficients will be deter-
mined with the help of symmetry requirements. The local
frame can be transformed into the new one

Ri�� = TijRj�, �6�

where Tij �i , j=1,2 ,3� are the elements of the orthogonal
transformation. The polarization may be expressed in terms
of new variables with new �primed� FE coefficients. As the
FE coefficients do not change under symmetry operations,
we can identify the independent FE coefficients. As a result
we get six FE coefficients sii and bii. But from the identity
�5� we conclude that the coefficients sii and bii are not
unique. The same polarization P can be obtained by means
of the transformed coefficients

sii� = sii + c, bii� = bii + c , �7�

where c is any constant. Thus, only five coefficients are in-
dependent. Note that the differences sii−sjj, bii−bjj, or sii
−bjj do not depend on the constant c.

Now we consider six small deformations of the directors

�L� ,M� ,N� � of the form �39�

L� �r�� = �1,q7y − q5x,q9z − q4x� ,

M� �r�� = �q5x − q7y,1,q8z − q6y� ,

N� �r�� = �q4x − q9z,q6y − q8z,1� , �8�

where the parameters qi �i=4, . . . ,9� describe the deforma-
tions �1 /qi is a certain length much greater than the size of
the sample�. The corresponding FE polarization has the form

Px = q7�s11 − b22� + q9�s11 − b33� = q7a7 + q9a9,

Py = q5�s22 − b11� + q8�s22 − b33� = q5a5 + q8a8,

Pz = q4�s33 − b11� + q6�s33 − b22� = q4a4 + q6a6, �9�

where we introduced six physical FE coefficients ai which
satisfy the identity

a4 − a5 − a6 + a7 + a8 − a9 = 0. �10�

Equations �9� are phenomenological expressions and we
should provide alternative microscopic expressions in order
to obtain microscopic expressions for the FE coefficients.

Let us consider a system of N rigid molecules with the
C2v symmetry. Such molecules can form uniaxial �D�h� and
biaxial �D2h� nematic phases. The free energy for the system
can be derived in the thermodynamic limit �N→� , V
→� , N /V=const� from the Born-Bogoliubov-Green-
Kirkwood-Yvon hierarchy �40� or as a cluster expansion
�41�. The total free energy F consists of the entropy term and
the interaction term

F = Fent + Fint, �11�

where

�Fent =� dr� dR G�r�,R��ln�G�r�,R��� − 1� , �12�

�Fint = −
1

2
� dr�1dR1dr�2dR2G�r�1,R1�G�r�2,R2�f12. �13�

We define dR=d� d� sin � d	, f12=exp�−�
12�−1 �the

Mayer function�, �=1 / �kBT�, u� =r�2−r�1=u�� ; and � is related
to the ideal gas properties. The normalization of the one-
particle distribution function G is

� dr� dR G�r�,R� = N . �14�

The equilibrium distribution G minimizing the free energy
�11� satisfies the equation
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ln�G�r�1, R1��� −� dr�2dR2G�r�2, R2�f12 = const. �15�

In the homogeneous biaxial nematic phase composed of C2v
or D2h molecules the distribution function has the form �39�

G0�R� = G0�l� · L� ,l� · N� ,n� · L� ,n� · N� � , �16�

where the unit orthogonal vectors �l�,m� ,n�� describe the mol-
ecule’s orientation. For the C2v molecules, the molecule sym-
metry axis is determined by the vector n� . Note that this is the
long axis of wedge-shaped molecules and the short axis of
banana-shaped molecules. In order to derive expressions for
the elastic constants it is enough to assume that, in the de-
formed phase, the phase orientation depends on the position
but the magnitude of the alignment is constant,

G0�r�,R� = G0�l� · L� �r��,l� · N� �r��,n� · L� �r��,n� · N� �r��� . �17�

In order to derive expressions for the FE coefficients we have
to take into account a small change of the alignment,

G�r�,R� = G0�r�,R��1 + g�r�,R�� , �18�

where g is expected to be small. The microscopic polariza-
tion depends on the position inside the phase via the distri-
bution function

P� �r�� =� dR G�r�,R��� �R� . �19�

The molecule electric dipole moment can be defined in the
molecular frame as

���R� = �1l� + �2m� + �3n�, � = x,y,z . �20�

According to Straley �23�, the function g can be obtained
from the expression

g�r�,R1� =� du� dR2f12�u� · �� �G0�r�,R2� . �21�

Finally, from Eqs. �19�, �21�, and �8�, we get the components
of the microscopic FE polarization,

Px =� du� dR1dR2f12G0�R1��x�R1���U2z − W2x�q9uz

+ U2yq7uy� ,

Py =� du� dR1dR2f12G0�R1��y�R1��W2y�− q8uz�

+ U2y�− q5ux�� ,

Pz =� du� dR1dR2f12G0�R1��z�R1���U2z − W2x��− q4ux�

+ W2yq6uy� , �22�

where we denoted

U� = �1G0l� + �3G0n�,

W� = �2G0l� + �4G0n�. �23�

When we compare Eqs. �9� and �22�, we obtain the equations
for the FE coefficients:

a4 =� du� dR1dR2f12G0�R1��z�R1��− ux��U2z − W2x� ,

a5 =� du� dR1dR2f12G0�R1��y�R1��− ux�U2y ,

a6 =� du� dR1dR2f12G0�R1��z�R1�uyW2y ,

a7 =� du� dR1dR2f12G0�R1��x�R1�uyU2y ,

a8 =� du� dR1dR2f12G0�R1��y�R1��− uz�W2y ,

a9 =� du� dR1dR2f12G0�R1��x�R1�uz�U2z − W2x� . �24�

Let us consider the uniaxial nematic phase composed of
wedge-shaped molecules. The long molecule axes n� are al-

most parallel to the N� axis, and we get

U� = 0, a5 = a7 = 0. �25�

We recover the Meyer expression �1� with two FE coeffi-
cients,

e1 = a4 = a6, e3 = − a8 = − a9. �26�

Finally we consider the uniaxial nematic phase composed of

banana-shaped molecules. The long molecule axes l� are al-

most parallel to the L� axis, and we get

W� = 0, a6 = a8 = 0. �27�

We obtain the Meyer expression �1� where N� is replaced with

L� . The FE coefficients are

e1 = a7 = a9, e3 = − a4 = − a5. �28�

Note that Eqs. �26� and �28� describe C2v molecules, whereas
very often simpler expressions for C�v molecules are present
in the literature.

In conclusion, we derived microscopic formulas for the
six FE coefficients in the case of the biaxial nematic phase of
C2v molecules. It appears that only five FE coefficients are
independent. In order to calculate the values of the FE coef-
ficients one needs the one-particle distribution function and
the potential energy of molecular interactions. The Meyer
expressions �21� are recovered in the case of the wedge-
shaped and banana-shaped molecules in the uniaxial nematic
phase. Generally, the splitting of the two Meyer FE coeffi-
cients and the appearance of new small FE coefficients are
expected at the uniaxial-biaxial nematic transition. In order
to describe real substances, the presented results should be
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generalized beyond the low-density limit, where the Mayer
function f12 is replaced with a better approximation of the
direct correlation function c2. On the other hand, other
sources of dielectric polarization should be taken into ac-
count: the quadrupole contribution or the ordoelectric polar-
ization. But even then a qualitative comparison between
theory and experiment may be difficult, because the experi-

mental data on FE coefficients are still scarce and sometimes
contradictory �33�.
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